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We investigate streaming in a square cavity where a lateral temperature gradient 
interacts with a constant gravity field modulated by small harmonic oscillations of 
order E.  The Boussinesq equations are expanded by regular perturbation in powers of 
e, and the O(2) equations contain Reynolds-stress-type terms that cause streaming. 
The resulting hierarchy of equations is solved by finite differences to investigate the 
O ( 2 )  and O(2)  fields and their parametric dependence on the Rayleigh number Ra, 
Prandtl number Pr, and forcing frequency w. It has been found that the streaming flow 
is quite small at small values of Ra, but becomes appreciable at high Ra and starts to 
influence such flow properties as the strength of the circulation and the overall heat 
transfer. Under suitable parametric conditions of finite frequency and moderate Pr the 
periodic forcing motion interacts with the instabilities associated with the O(en) base 
flow leading to resonances that become stronger as Ra increases. It is argued that these 
resonances will have their greatest effect on streaming for Pr s 1. At low frequencies 
the streaming flow shows marked structural changes as Ra is increased leading to 
an interesting change in the sign of the O(e2) contribution to the Nusselt number. 
Also, as the frequency is changed the O(e2) Nusselt number again changes sign at 
approximately the resonant frequency. 

1. Introduction 
A well-understood problem in buoyancy-driven convection is the flow induced in a 

Boussinesq fluid by a lateral temperature gradient in the presence of a constant 
downward gravitational field. This problem has been the subject of several numerical, 
analytic and experimental treatments and a good introduction can be found in Gebhart 
et al. (1988). In the present work we wish to introduce a more general gravitational 
forcing which may have arbitrary spatial and temporal dependence, i.e. if g denotes this 
generalized gravity, we have g = g(x, t). For small cavities it is reasonable to assume 
that g has a spatially uniform time-averaged component, permitting us to write it as 

(1) 

where g ,  is the time-averaged value of g acting along the direction of the unit vector 
k andf(x, t )  is any arbitrary vector; E is a scaling parameter which gives the magnitude 
of the forcing vectorf(x, t )  relative to the magnitude of the mean gravity go. If e 4 1 
then the forcing may be seen as a perturbation of the mean gravity. Since the governing 
equations are nonlinear this kind of forcing leads to the phenomenon of streaming, 
where a time-periodic forcing with zero mean produces a periodic response consisting 
of a steady solution with a non-zero mean and time-dependent fluctuations involving 

g = gn(k + d(x ,  t ) ) ,  

12-2 
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higher harmonics. This streaming field is significant because it can contribute to 
various transport phenomena such as heat transfer or the distribution of chemical 
species in a time-averaged sense. 

The first theoretical analysis of the phenomenon of streaming was done by Lord 
Rayleigh (1945), in connection with sound waves. Later Schlichting (1979) solved for 
the streaming flow field produced by radial oscillations of a cylinder in an infinite fluid. 
Lighthill (1978) has clarified the mechanisms responsible for streaming by focusing on 
the production of Reynolds-stress-type terms that contribute to the mean transport. 
More recently, there is renewed interest in the subject due to g-jitter-induced streaming 
produced in microgravity environments. Alexander (1 990) has discussed the sig- 
nificance of g-jitter in understanding space experiments where buoyancy forces play a 
role. Biringen & Peltier (1 990) have investigated g-jitter effects on three-dimensional 
Rayleigh-BCnard convection by considering the full nonlinear time-dependent 
problem. Their results agree with the earlier linearized treatment of Gresho & Sani 
(1970) who reduced the Rayleigh-Benard system to a problem governed by Mathieu’s 
equation. Thus, depending on the frequency of the forcing, the system exhibits a 
synchronous or subharmonic response. Biringen & Danabasoglu (1990) have solved 
the full nonlinear, time-dependent Boussinesq equations for g-jitter in rectangular 
cavities. The part of their results relevant here is that obtained for non-zero terrestrial 
gravity and modulation that is perpendicular to the applied temperature gradient. 
Although in their work the modulation is much larger than the time-averaged gravity 
( E  = 1 9 . 6 , ~  defined previously) their result shows the response to consist of a harmonic 
time-dependent component superposed over steady streaming. Our results are 
complementary to these, since by a weak nonlinear calculation, we are able to explore 
parametric dependencies that explain physical mechanisms and scalings. Amin ( 1  988) 
has investigated the heat transfer from a sphere immersed in an infinite fluid medium 
in a zero-gravity environment under the influence of g-jitter. Her conclusion is that heat 
transfer is negligible for high-frequency g-jitter but under special circumstances, when 
the Prandtl number is high enough, low-frequency g-jitter may play an important role. 
Alexander et af. (1991) have carried out a numerical investigation of the effect of g- 
jitter on dopant concentration in a modelled crystal growth reactor. They conclude 
that low-frequency g-jitter can have a significant effect on dopant concentration. 

The focus of this study is to examine the response of a nonlinear system, such as one 
consisting of an enclosed Boussinesq fluid with an imposed temperature gradient, to a 
time-periodic perturbation of the gravitational field, g as given by (1). By considering 
a small perturbation of the gravitational field, the equations can be expanded in powers 
of C, leading to results of great simplicity that can be interpreted to understand the 
mechanisms of streaming. Since the problem is governed by no fewer than four 
parameters, and there are a number of physical mechanisms operative in various 
regimes of this parameter space, we feel that the semi-analytic approach adopted here, 
while limited to small e,  yields insight and understanding that would be difficult to 
obtain otherwise. Our initial interest is in streaming flows caused by forcings that are 
periodic and aligned with the steady gravitational field and a temperature gradient that 
is normal to the direction of the gravitational field. In this work, $2 describes the 
problem geometry and the small-e expansions of the Boussinesq equations. Section 3 
considers the techniques employed to solve the equations and also a discussion of 
numerical accuracy. In $4 we present the results in the special limit of very low-forcing 
frequency - the quasi-static approximation - and in $ 5 we consider the case of finite 
forcing frequencies. In the course of finite-frequency studies, it is useful to recall the 
extensive literature on instability modes of the unforced system. We review that 
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literature in the appropriate sections. Section 6 contains suggestions for extensions to 
the present work. 

2. Problem definition 
Figure 1 shows the geometry considered, i.e. a square two-dimensional cell of side 

L. The cell contains a Boussinesq fluid and the temperature of the two lateral walls is 
assumed to be q and T,, where q > T,, the other two walls being thermally insulated. 
No-slip boundary conditions and impermeability of all walls has also been assumed. 
A time-dependent body force in accord with (1) acts on the fluid and, as a result of 
volume expansion, fluid circulation will exist. In order to scale the equations we choose 
thermal-diffusive time and velocity scalings : 

where ST = - T,, K is the thermal diffusivity and w is the frequency of any of the 
Fourier modes into which (1) may be decomposed. In this initial study we confine 
ourselves to the case where the gravitational perturbation is aligned with the steady 
gravitational field acting downward. Hence if unit vector k is chosen to be along the 
positive y-axis, (1) can be rewritten as 

g = -go[l + cf(.)l k ,  (2) 

where f is assumed to be a function of time only. For now we consider the case of a 
harmonic forcing wherefis given byf(7) = cos (w7) and w is the (single) dimensionless 
forcing frequency. Later, in $6 we consider the case of a generalf(7). The full time- 
dependent Boussinesq equations thus assume the form 

(3) 

(4) 

1 
V4$ - pr [a, V2+ + J( $, V '$)I = Ra a,8[ 1 + e cos (wr)],  

a, 6' + J($, 6') = '7'8, 

where Pr = u / K  is the Prandtl number, and the Rayleigh number Ra is defined as 
Ra = a(ST)go L 3 / ( u ~ ) ;  u is the kinematic viscosity, a the volume expansion coefficient. 
J(u, v )  is defined as J(u, v )  = uy v, - u, vy.  The following boundary conditions are 
applied: the streamfunction is zero at all boundaries as is its normal derivative. The 
temperature boundary conditions are O(0, y )  = 1,8( 1 ,  y )  = 0 and 6',(x, 0) = O,(x, 1) = 0. 

For reasons noted above, it is compelling to consider the e + 1 limit wherein the 
Boussinesq equations can be expanded in powers of e. We therefore have 

$ = + o + F $ l + € 2 $ 2 + . . . ,  

6'= 6',+€8,+€26',+ .... 

When these expansions are substituted into (3) and (4), they generate a hierarchy of 
equations to be solved at each order of e. At O(eo) we recover the steady Boussinesq 
equations for a stationary gravitational field with $ replaced by and 6' replaced by 
8,. The boundary conditions are the same as before. We thus have 

( 5 )  

V'6'0 = J(+o,eo>. (6) 

1 
Pr V4$0 - -JJ(k0, V2$o) = Ra a, O,,, 
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FIGURE 1. Geometry of the flow showing boundary conditions. 

Thus the O(E') problem with associated non-homogeneous boundary conditions is the 
well-studied problem of thermal convection in a horizontally heated cavity, which we 
refer to as the base state. Higher-order terms, which are time dependent, are 
perturbations of this stationary base-state solution. We have at each O(P) ,  where 
n = 1,2, . . . , linear systems of equations for streamfunction and temperature with 
boundary conditions that are homogeneous. These equations can be written very 
compactly in terms of the operators 9* and L$: 

(7) 

%($i, 0J = V20, - J($o, - J ( $ I . i ,  OJ, (8) 

1 
dz7,(1Cli, 00 = V4@t -5 (J($o, V2$J + J($i, Vz$o)> -Raa,  Oi, 

where i = 1,2 and $i stands for the streamfunction at ith order of e. Hence it is possible 
to view these as linear systems of the type 

a r  d ( $ n ,  0,) + 9 ( $ n ,  0,) = hn(x, 7) 
for n = 1,2 where 9, d are linear operators given by 

and h, represents the forcing on the right-hand side. At first order in e the forcing, h,, 
can be written as h, = h;(x)e'"'; hence we have particular solutions for $, and 0, (at 
long times) of the form 

$, = Re [$; eiwT], 0, = Re [0; eiwr]. 

Substituting $, = $; eiW, etc. into the O(el) terms, simplifying and dropping the primes 
for notational brevity gives the following equations for the O(el) fields: 

- i d ,  + %($,, 0,) = 0. (10) 
and its normal derivatives are zero on the boundaries. 0, is zero on the lateral walls 

and its normal derivatives are zero on the upper and lower walls. At O(e2), the forcing 
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terms consist of a steady-streaming component and a time-dependent higher harmonic 
due to generalized Reynolds-stress terms. As before we can express particular solutions 
to the linear system as 

$2 = $; + $.,* eZiwr, 8, = 8; + $: e2iwr. 

Substituting these into the O ( 2 )  terms and simplifying, it is possible to extract two sets 
of equations: one for the time-dependent higher harmonic, which is not of interest 
here, and another system for the steady streaming component: 

%($2, 6 2 )  = i[J($,;R, 0;) + JM, 831, (12) 
where the superscripts R, Idenote the real and imaginary parts respectively. Again, we 
have dropped the primes for notational convenience. The homogeneous boundary 
conditions for $2 and 8, are identical to those at O(c). These coupled sets of equations, 
(5 ) ,  (6) and (9)-( 12), with appropriate boundary conditions can be solved sequentially 
to obtain the base state and its higher-order corrections. It is seen that the solution 
depends upon three parameters : Ra, Pr and the dimensionless forcing frequency, o. 
While carrying out the e-expansions it is seen that the perturbation to gravity is 
multiplied by Ra making it a term of scale 6 Ra. Hence caution is needed when taking 
the limit Ra+ cc which is often of interest, because in order to ensure the validity of 
the expansion, 8 Ra << 1 should be enforced even as Ra+ 00. 

As mentioned earlier, the O(eo) problem is well studied and has been described in 
analytic studies such as Batchelor (1954) where the conduction regime at low Ra is 
considered and Gill (1966) where boundary-layer behaviour is considered at high Ra. 
There are numerical studies such as Vahl Davis (1968) and the more recent work of 
Chenoweth & Paolucci (1986). There are a number of experimental studies as well, for 
example by Elder (1965). These studies establish that at low Ra the flow is weak and 
the heat transfer is dominated by conduction. At high Ra the flow becomes stronger, 
resulting in buoyancy boundary layers on the sidewalls and a vertically stratified inner 
core. 

Equations (9) and (10) represent forced linear systems. If we consider the 
corresponding homogeneous equations along with homogeneous boundary conditions, 
they constitute an eigenvalue problem which would give a set of eigenvalues and 
eigenvectors that would correspond to modes of instability of the base-state flow. In 
particular (9) and (10) for natural modes become 

%($I, 0,) = i h h  (14) 

where h is the complex eigenvalue for normal modes proportional to eiAT. This is an 
interesting problem, which because of the complexity of the variable coefficients has 
not been completely dealt with in the literature. However, a fairly complete analysis of 
model problems together with direct numerical simulations allow us to understand the 
basic instability mechanisms that are associated with the eigenvalue problem, (1 3 )  and 
(14). Gill & Davey (1969) and Bergholz (1978) have studied a model problem in which 
the walls of a channel of width L but infinite vertical dimension are held at 
temperatures T = AT+ Gy and Gy respectively. These boundary conditions admit an 
exact parallel-flow solution of the Boussinesq equations whose stability depends upon 
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the Rayleigh and Prandtl numbers and upon the dimensionless stratification parameter, 
ye = ( $ T ~  Ra)li4, where T~ = (GL/AT)  (the subscript B denotes variables in Bergholz's 
1978 scaling). The results are complicated in detail but the following general picture 
applies: for small Pr there exists a stationary mode that is driven by buoyancy. As ye 
increases, the base-state profiles tend towards boundary-layer limits, and the stationary 
mode is replaced by travelling modes. Competition between these modes exists for 
0 < Pr < 12.7. In the range 12.7 < Pr < 50, only travelling modes occur, but for 
Pr > 50 there is again competition between modes with large ye  again favouring the 
travelling waves. The travelling wave is the only mode to survive in the boundary-layer 
limit y B  + co. Numerical results are available over the entire range of parameters 
(Bergholz 1978) and rescaled results and asymptotic formulae are available in the single 
buoyancy-layer limit, yB+ 00, in Gill & Davey (1969). 

Attempts to relate these instabilities observed in experiments in closed cavities of 
finite aspect ratio require an estimate of the stratification parameter G as a function of 
Ra, Pr and aspect ratio A, and the assumption that the stability problem is adequately 
treated by a local parallel-flow approximation. When G is estimated for large Ra from 
the boundary-layer theory of Gill (1966), reasonably good agreement is found over a 
range of Pr for tall cavities, see e.g. Bergholz (1978, table 4). 

The results of relevance here are for the travelling wave modes at high Ra, these 
being associated with both shear and buoyancy modes within the boundary layer. In 
the present scalings, these layers are expected to become unstable at Rayleigh numbers, 

Ra,, = (RPr)4/2A3, 

where R is a Reynolds-number based on the velocity in the buoyancy layer and A is 
the aspect ratio of the cavity, which in our case is 1. Gill & Davey (1969) tabulate the 
critical value of R as a function of Pr for boundary-layer instability. In the limit 
Pr+ co, this becomes (using values from Gill & Davey 1969) Ra,, = 25312.5Pr2/A3. 
The frequency of the neutral travelling modes is given by 

wBL = c ? C " R ~ ~ / ~ ( ~ A ) ~ / ~ .  (16) 

Again the 6, c" are the wavenumber and phase velocity of the critical mode which are 
tabulated in Gill & Davey (1969). There are other modes associated with internal waves 
in the stably stratified core. A number of workers have studied the problem of transient 
flow in a heated cavity in what has also been called the 'oscillatory approach to steady 
state'. Here a sudden large temperature gradient is applied to the cavity at some initial 
time and the velocity and temperature fields in the cavity are treated as an initial-value 
problem. The initial perturbation excites transient modes which are damped out as the 
flow approaches steady state, suggesting an oscillatory relaxation process. Patterson & 
Imberger (1980) consider this to be a result of the rapid turning of a hot (cold) packet 
of fluid as it reaches the top (bottom) wall of the cavity. This is thought to cause a 
tilting of isotherms, exciting gravity waves which oscillate at the Brunt-Vaisala 
frequency. Using scale analysis Patterson & Imberger (1980) have predicted that the 
time required for transients to die out scales as Ra-li4. This is interesting because it 
provides an estimate of the time when the solution of (9) and (10) would become purely 
harmonic. 

hey (1 984) has conducted experiments on impulsively heated (cooled) cavities and 
observed such wave motion. He suggests that such motion is excited by an unstable 
hydraulic jump which forms if the Froude number of the flow after turning the corner 
is supercritical. The condition for the formation of such unstable jumps may be 
established by a combination of scaling analysis and adoption of a criterion for 
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instability of the jump. In the present scalings, the instability of the internal wave 
occurs when 

and with a characteristic Brunt-Vaisala frequency 

Ra,, > 1.3 x 10sPr4/A3 (1 7) 

It should be emphasized that ( 
Ra, i.e. rB = 

These concepts have been 
simulations of Paolucci & Chc 

5t(18) imply a specific choice of stratification at high 

fully validated through extensive direct numerical 
ioweth, who studied time-dependent two-dimensional 

thermal convection for a specific Prandtl number (Pr = 0.71) over a range of aspect 
ratios and Rayleigh numbers. They find two distinct stability modes whose transitional 
Rayleigh numbers and frequencies are well predicted by (1 5 t (  18) : for Rayleigh 
numbers below that given by (15) and (17) they find damped modes with frequencies 
corresponding to (16) and (18). They also present a number of time sequences showing 
how the hydraulic jumps at the top (hot) and lower (cold) corners become oscillatory 
and excite internal waves in the stratified core. We note that the local scale analysis of 
Patterson & Imberger (1980) is incapable of showing sustained oscillations, as it 
neglects coupling between the local excitation in the corners and the overall fluid 
circulations. Paolucci & Chenoweth (1989) make this connection through numerical 
simulations and an appeal to the forced mixing experiments of Thorpe (1968). 

These oscillatory modes associated with boundary-layer travelling-wave instabilities 
and excited internal waves will become relevant to our studies in $5 which involve 
forcing at finite frequency. 

Now we may ask what the forced problem, given by (9) and (10) represents and what 
kind of solutions can we expect for it. It is clear that if the forcing term on the right- 
hand side corresponds exactly to the eigenvector at the corresponding frequency, this 
would result in a resonance which would make (9) and (10) singular. However, it is 
highly unlikely that the forcing would be exactly the same as the eigenvector. More 
generally we would expect to have for a given choice of (Ra,  Pr,w) a non-zero 
projection along the eigenvector that is ' nearest' the given forcing. This eigenmode 
would become excited leading to a response that would depend on the eigenvalues of 
(13) and (14). Suppose we are in a parametric regime (Ra,  Pr) where all the eigenvalues 
of the homogeneous problem have negative real parts and thus represent damped 
modes: in other words the unforced problem is linearly stable. Then we can expect 
interactions with the forcing which might lead to enhanced circulation/heat transfer. 
As the eigenvalues become positive (to be expected at very high Ra) we expect large 
resonances but the solution is suspect since the assumed (steady) flow is itself unstable. 

3. Numerical method 
We give here a brief discussion of our numerical method and its accuracy. We have 

three coupled systems of elliptic partial differential equations, ( 5 )  and (6), (9) and (lo), 
and (11) and (12), which we solved successively at each order in c using finite 
differences. The O(eo) equations are nonlinear and must be solved iteratively. Because 
of the variable coefficients and forcing, the O(2)  and O(e2) equations also have to be 
treated numerically, but being linear systems they can be solved either iteratively or by 
direct inversion of the matrix resulting from finite differencing. We used standard 
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Grid size Nu0 Nu2 I@,lmas I21.1lmaz 121.21 map 

16x 16 1.083 1.587 x 1.055 9.072 x 10-1 7.010 x 
31 x 31 1.112 1.660 x 1.146 9.897 x 10-1 7.984 x 
61 x 61 1.116 1.654 x 1.167 1.006 x 10-O 8.084 x 

TABLE 1. Effect of grid size on Nusselt number and maximum field properties at Ra = lo3; 
Pr+ cc ; w = 0 

Grid 121.01mas l l l r l lmaz  l'llmaz 

31 x 31 17.12 % 30.47 % 30.48 % 
41 x 41 10.29% 12.45% 11.01% 
61 x 6 1  3.14% 6.47 % 1.89% 

TABLE 2. Percent error in I$,,lmas, I$llmas and 10llmaz for Ra = lo6; Pr+ cc; w = 0 with mesh 
refinement. The error has been calculated using 81 x 81 solutions as base values. The maximum field 
values at 81 x 81 mesh are: I$Olmar = 18.74; I + J m a z  = 6.18; 10llmaz = 0.1371 

Ra I$0lmaz (DVD) I lkolmaz (PI Nu, (DVD) Nuo (P) 

104 5.0280 (31 x 31) 2.243 2.262 

1 O6 16.32 16.815 (41 x 41) 8.800 8.694 

TABLE 3. Comparison of present (P) results with de Vahl Davis (1982) (DVD) at finite Prandtl 
number, Pr = 0.71 

- 103 1.1670 (61 x 61) 1.118 1.112 

105 9.612 10.312 (41 x 41) 4.519 4.597 
~ 

second-order centred differences and enforced the Neumann boundary conditions with 
one-sided second-order formulae at the boundaries. The calculations for low forcing 
frequencies were performed using SOR. At large frequencies, the matrix becomes 
highly unsymmetric and SOR performs poorly. Hence we used a direct sparse solver, 
see Zlatev, Wasniewski & Schaumburg (198 1) which performs full Gaussian 
elimination making full use of the sparsity of the matrix. 

We first consider the accuracy of the solutions for the quasi-static case obtained in 
the limit Pr --f co and w + 0. We solved the quasi-static equations using point SOR and 
the convergence criterion used was to reduce the error by a factor of 105-10s 
depending upon the parameters. The governing equations at each order of c are 
invariant with respect to the following transformation: x* = -x; y* = - y ;  @: = @ i ;  

8: = - 8, where i = 0,1,2. We verified that the numerical solution also showed these 
symmetries. Table 1 shows the 16 x 16, 31 x 31 and 61 x 61 results for the Nusselt 
numbers Nu, and Nu, (Nu, to be defined below) and the maximum values of the 
streamfunctions, I@,,lmaz, l @ l l m a z  and I @ , ( m a z  at Ra = lo3, Pr+ 00 and w = 0. 

In table 2 we show further mesh refinement results for Ra = lo6 for meshes of 
31 x 31, 41 x41, 61 x 61 and 81 x 81. The error was calculated using the 81 x 81 
solution as base. For meshes of 41 x 41 and higher the error is about 10 YO. 

Next we consider the results for finite Prandtl number and finite frequency. Vahl 
Davis & Jones (1982) have done bench-mark calculations for the O(c") problem for 
Pr = 0.71. These are presented along with the present results for Ra = lo5 and lo6 in 
table 3 which tabulates the maximum value of the streamfunction, ( @ , , I m a z ,  Nusselt 
number and the mesh that was used to generate the results. As can be seen, the results 
agree to within 5-6 %. 
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w 21 x21 31 x31  Error % 

10’ 2.1296 2.2625 5.87 
lo1 2.1346 2.2355 4.53 
loz 3.6640 3.7561 2.42 
lo3 4.8245 4.9440 2.41 
lo4 2.1866 2.2733 3.81 
lo5 0.3034 0.3252 6.70 

TABLE 4. Maximum values of $, for Ra = lo4; Pr = 100 for meshes of 21 x 21 and 31 x 31 

Grid f o =  1 w=20000 

41 x41  6.8717 33.62 
51 x51  7.2993 35.83 
61 x61  8.1724 39.70 

TABLE 5. Effect of mesh refinement on I $ J r n a z  at Ra = 10’ 

The accuracy for finite w was also studied by mesh refinement. For example, table 
4 compares the maximum value of the streamfunction calculated on a mesh of 
21 x 21 and 31 x 31 for Ra = lo4, Pr = 100 at selected values of w. The table shows a 
general level of accuracy on the order of 7 %  or better. In table 5 we show mesh 
refinement results for Ra = lo’, the highest Ra considered, at meshes of 41 x41, 
51 x 51 and 61 x 61 for w = 1 and w = 20000. Although the accuracy degrades at such 
high Ra, it remains at 15 % or better, and the solution shows convergence under mesh 
refinement. As expected, finer meshes at higher Ra show somewhat slower convergence 
owing to the well-known stiffness of the governing equations and the onset of 
boundary-layer behaviour. However, we verified by detailed examination of the full 
computed fields that even though accuracy was 10-15 % all dynamically significant 
processes were being captured by the numerical resolution employed. To summarize, 
we utilized grids ranging from 41 x 41 to 8 1 x 8 1 depending on the parameter values of 
Ra, w and Pr with all results accurate to at least 15%, and in most cases better than 
5 % .  

4. The quasi-static approximation 
We recall that the response of the system is given by forced linear systems. The 

forcing, given by the right-hand sides of (9)-(lZ), has both spatial structure and 
temporal dependence. In this section we will focus on the effects of the former, i.e. the 
spatial structure, and consider the limit o+O; in a later section we will examine the 
more complex case when the system is forced at finite frequencies. In the o -+ 0 limit, 
the effects associated with temporal rate of change in (9)-( 12) are negligible and hence, 
as we will see, diffusive mechanisms dominate. Furthermore previous studies, e.g. 
Alexander et al. (1991), have suggested that lower frequencies are more significant for 
enhanced transport due to streaming. 

We also invoke the limit Pr- co, as this allows us to neglect the nonlinear inertial 
terms in (1 1) thus focusing on streaming due to nonlinear convection of energy and 
correlations of temperature fluctuations with the time-dependent body force. This is a 
good initial approximation (that will also be relaxed in 5 5) because numerical 
computations have shown that the base flow for Pr 3 1 is usually quite close to the case 
of Pr + 00, see e.g. Vahl Davis (1968). We note that under these limits the perturbation 
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FIGURE 2.  Contours of O1 at Ra = 1 with symmetry about the horizontal midplane. As shown the 
‘hot’ (‘cold’) contours are at the top (bottom), but this being a sinusoidally oscillating field, the signs 
are reversed in the latter part of the cycle. The value at the maximum isotherm is 1.544 x 

velocity and temperature fields are always in temporal phase with the forcing. We are 
now left with only one parameter, Ra, and can study the dependence on this single 
parameter in some detail. 

4.1. Numerical results 

In this subsection we examine numerically obtained solutions to (5 ) ,  (6) and (9)-(12). 
We find that variations in Ra, which is the sole remaining parameter, causes significant 
structural changes in the response of the system. Further, it is possible to interpret these 
changes by appealing to the spatia.1 structure of the forcing. This relation is made in 
subsequent subsections. 

Therefore, we begin by considering the behaviour at Ra = 1, when the flow is in the 
conductive regime. It is very well known that the $, circulation consists of a single cell 
and the 8, isotherms are nearly vertical in this case. The circulation also consists of 
a single cell and hence is not shown. However, in figure 2 the 8, field shows structure, 
a symmetry about the horizontal midplane, the regions above it being positive and 
hence hot and the regions below being negative and cold. We recall that the 8, field 
oscillates in time, hence the signs are reversed in the other half of the cycle. Contours 
of the streaming $2 field shown in figure 3 show a quadrupole structure, diagonally 
opposite circulations being of the same sign. The lower-left and upper-right cells have 
a clockwise circulation of the same sense as the $,, field and thus enhance it. The other 
two cells are of the opposite counterclockwise sense and suppress the $, circulation. 
Figure 4 shows the isotherms of the steady 82 field which are symmetric about the 
vertical midplane with the hot (positive) region on the right and the cold (negative) 
region on the left. 

The mean Nusselt number is computed in the usual way by averaging the local flux 
over the height of the wall for each order of E .  Since we are interested in the steady 
Nusselt number and the 8, field does not contribute to the heat transfer in a time- 
averaged sense, we do not consider it when computing the overall Nusselt number. 
Hence the Nusselt number is computed as 

NU = NU, + e2Nu2 + 0(e4), (19) 
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FIGURE 3. Contours of yF, at Ra = 1 showing quadrupole streaming. The clockwise (negative) eddies 
and the counterclockwise (positive) eddies are of approximately the same strength. The maximum 
value of the streamfunction is 1.4908 x 
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FIGURE 4. Contours of the steady 0, field at Ra = 1. The hot region is on the right and the cold 
region is on the left. The value of the maximum isotherm is 1.446 x lo-'. 

Ra Nu, Ra Nu, 
loo 6.926 x 103 1.660 x lo-, 
10' 6.925 x lo4 - 1.357 x lo-' 
10, 6.822 x lo6 -4.653 x 10-1 

TABLE 6. Variation of Nu, with Ra as w + 0 

where both Nu, and Nu, are functions of Ra. Table 6 shows numerical values of Nu, 
for a wide range of Ra. As is well known, Nu, is near unity at low Ra but increases as 
Ra is increased. Nu, is extremely small at low Ra and increases in magnitude with 
increase in Ra, but beyond a particular value of Ra, Nu, changes sign and continues 
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FIGURE 5. Contours of 8, at Ra = lo6 showing the thermal boundary layers on the sidewalls and 
a stably stratified core. 
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FIGURE 6. Contours of O1 at (a) Ra = 200 and (b )  500. It is seen that as Ra is increased the field 
distorts in a clockwise sense. 

to increase in magnitude. Later, we shall see that this is caused by enhanced convection 
at higher Ra. 

Before examining the effect of Rayleigh number on the streaming fields, we briefly 
consider its effect on the base state and the periodic O(e) fields. As Ra is increased, the 
y?, convection cell becomes stronger and at very high Ra,  boundary layers form. In the 
O(eo) temperature fields, increase in Ra leads to a distortion of the isotherms due to 
increase in convective transport of energy and at extremely high Ra leads to thermal 
boundary-layer behaviour as shown in figure 5 for Ra = lo6. The time-periodic y?, cell, 
like y?", becomes stronger at higher Ra and forms boundary layers in the limit Ra -> co. 
However, the harmonic 8, field shows an interesting development, the isotherms begin 
to distort in a clockwise sense, the extent of the distortion being a function of the 
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FIGURE 7. (a)  Contours of $, at Ra = 200 showing suppression of the clockwise rotating eddies. The 
counterclockwise (positive) eddy i s  much stronger than at Ra = 1, figure 3, the value of the maximum 
streamfunction being 1.253 x (b) Contours of $, at Ra = lo3 showing a single convection cell 
which has the opposite sense as the O(EO) circulation. The value of the maximum streamfunction is 
7.997 x lo-,. 
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FIGURE 8. (a) Contours of 8, at Ra = 200 showing distortion of isotherms. The value of the maximum 
isotherm is 6.667 x (b) Contours of 8, at Ra = lo3 showing progression of distortion with rise 
in Ra. The value of the maximum isotherm is 1.813 x lo-,. 

Rayleigh number. They are pictured at Ra = 2 x 10' and 5 x 10' in figure 6(a,  b) where 
the distortion can be clearly seen and this progresses as Ra is increased (see also 
figure 2). 

Increasing the Rayleigh number causes a suppression of the two clockwise cells of 
the quadrupole streaming flow shown in figure 3 whereas the two counterclockwise 
ones grow in strength and size as shown in figure 7(a )  for an intermediate Rayleigh 
number of 200. The two clockwise cells essentially disappear as shown in figure 7(b) ,  
Ra = lo3, whereas the remaining two coalesce and form a single counterclockwise 
circulation. This single streaming cell then increases in strength with further increases 
in Ra. At extremely high Ra, yk2 also forms boundary layers. 

The Oz field which contributes to the average Nusselt number also exhibits very 
interesting behaviour as shown in figure 8(a, b). This field begins to distort clockwise 
with the extent of the distortion being an increasing function of the increase in the R a :  
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FIGURE 9. Contours of Ra = lo6 showing boundary layers: (u) $, (the maximum streamfunction 
contour is 6.187); (b) 8, (the maximum isotherm is 0.1371); ( c )  $z (the maximum streamfunction is 
1.378); (d )  8, (the maximum isotherm is 3.986 x lo-'). 

at a particular value of Ra the cold region is symmetrically placed over the hot region 
so that whatever heat is given up to, say, the left wall in the hot region is reabsorbed 
in the cold region and the net heat transfer over the length of the wall is zero. The 
particular value of Ra at which Nu, is zero has been estimated to be Ra = 1200. Beyond 
this value of the Rayleigh number, the distortion continues, causing the correctional 
Nusselt number, Nu,, to change sign. At extremely high Ra thermal boundary layers 
form. In figure 9(a-d) we show $1, 01, $,, 8, at Ra = lo6 where the boundary-layer 
behaviour can clearly be seen. We will discuss this further in 94.3. 

Figure 10(a, b) shows logarithmic plots of the scaling of the streamfunction and 
temperature fields versus Ra. Figure lO(a) shows the absolute maximum of the 
streamfunctions, I$,lmaz, l$,lmaz and I $ 2 1 m a z  as a function of the Rayleigh number. 
From the figure it is clear that there are two distinct regimes. For low Rayleigh 
numbers it is seen that $, - Ra,  $l N Ra, and $, - Ra3, but as Ra+ co all three fields, 
@,, @l, $z have a Rali4 dependence. From figure 10(b) similar observations can be 
made about the scaling of B,, 0, and 8, fields. 8, is always order unity. It is seen that 
8, - Ra at low Rayleigh numbers but as Ra+ co, it becomes independent of Ra,  i.e. 
it is O( 1). The 8, field scales as Ra2 for low Ra but again becomes 0(1) as Ra + 00. 

It is clear from figure 10 that the six variables, $,, 1+9~, $, and B,,, 8,, B,, show two 
distinct scaling regimes and spatial structures at high and low Ra. By rescaling these 
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FIGURE 10. (a) Log-scale plot of I$,,lrnaz, J@'llmas, l $ Z l m a z  us. Ra showing the two scaling regimes. 
(b) Log-scale plot of 10llmuz, I021maz us. Ra. 

fields in each regime, it is possible to cast the equations into parameter-free form which 
then elucidates the physics in each regime. In the next two subsections we consider the 
limits Ra + 1 and Ra+ co respectively to determine the scaling behaviour. 

4.2. The small Ra and moderate Ra regimes 
In the previous subsection we noted significant structural changes as Ra is increased: 
the quadrupole streaming structure seen at low Ra disappears as Ra is increased; highly 
symmetric temperature fields also distort with increase in Ra leading to the interesting 
reversal in the direction of the heat transfer at O(e2). Some of these effects can be seen 
directly by examining the right-hand sides of (9)-(12). We will examine these in greater 
detail by considering expansions in Ra which will also explain the scalings seen in figure 
10. Thus, for Ra 4 1 we can expand the streamfunction and temperature fields in 
powers of Rayleigh number as follows: 

$, = $io i- Ra$,, i- Ra2$,, + . . . , 
0, = B,, + Raf?,, + Ra'B,, + . . . , 

(20) 
(21) 

where i = 0,1,2 represents the order of the field O(ci). Thus the problem is considered 
in the double limit c +  0, w+ 0. Since both limits are regular expansions, it is easy to 
show that the double-parameter expansion implied by (20) and (21) is uniform and 
captures the leading terms regardless of the order in which the limits are taken. 
Substituting these expansions in (5) ,  (6) and (9)-(12) and collecting terms of O(Rao) it 
is seen that ko0 = $,, = $20 = 0; similarly for the temperature fields it is easy to show 
that 8,, = 1 --x; and O,, = O,, = 9. For O(Ra) terms, we obtain the following 
equations for the stream functions: V4$,l = - 1 ; V4$,, = - 1 and V4$,, = 0. Since the 
boundary conditions are all homogeneous this shows that @, - Ra and $, - Ra and 
both fields correspond to a viscous circulation driven by a constant (uniform) vorticity 
source (Batchelor 1954). Similarly, for B,, and B2, we have 

(22) 
and V20,, = 0, where the convective terms are written in terms of primitive variables. 
The boundary conditions are homogeneous. Equation (22) shows that 8, - Ra and the 
symmetries in the field $,, fully account for the vertical symmetry in B,, as seen in figure 
2. In order to get the scaling for $, and B2 we consider the O(Ra2) terms, which give 
the following set of equations : 

V28,, = u,,.vB,, = -$ 1lY 

V 4 h 2  = +Sll,, (23) 
(24) V2B2, = iUl1 * VB,, + u,, * VB,,, 
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Term Ra = 200 Ra= lo3 

u, . vo, 10-3 10-1 
u, . vo, lo-' lo-' 
u, . vo, 10-3 lo-' 
u, * vo, 1 0 - 4  lo-' 
u, . vo, 10-4 1 o-2 

TABLE 7 .  Comparison of the orders of magnitude of the convection terms 

with homogeneous boundary conditions showing that $, - Ra2 and 8, - Ra2. All the 
scalings derived above seem to confirm those shown in figure 10, except $, which in 
figure 10(a) shows a Ra3 scaling. This indicates that Ra expansion of $, is numerically 
dominated by the next-order term in Ra, $23. 

It is possible to use these expansions to understand some of the features of the 
steady-streaming flow at low Ra. As (23) indicates, the streaming is governed by the 
source term @,lz. By examining the symmetries in 0, (by considering either (22) or 
figure 2), it is clear that ;BIZ changes sign in the four quadrants of the cavity, accounting 
for the quadrupole structure of the streaming flow observed. The field B,, satisfying 
(24) is not so easy to interpret because it is not clear apriori which, if either, of the two 
source terms is more important, but the numerical results clearly show that it is 
Ul,.V8,,. This term changes sign across the vertical midplane of the cavity leading to 
the antisymmetric distribution of isotherms observed in figure 4. 

For moderate Ra where expansions in Ra are inaccurate, but before the occurrence 
of boundary-layer behaviour we have to consider the full equations (9)-(12). In 
particular we are interested in understanding the distortion of the B1 and 8, fields which 
causes a change in the sign of the correctional Nusselt number Nu,. Therefore we 
consider (10) and (12) where it is again not clear which of the convective transport 
terms on the right-hand side are dominant. Table 7 shows the order of magnitude of 
each of these terms at two selected Rayleigh numbers, Ra = 2 x 10' and lo3. These 
order-of-magnitude estimates have been made by using the maximum value of each 
field over the domain. Considering Ra = 2 x 10' first, in (10) it is clear from the table 
that U, - VB, dominates U, . VO,. Similarly in (12), U, . VB, dominates the other terms. 
Figure 11 (a, b) shows contours of the dominant source terms of (9) and (12), Ul. VB, 
and U,.VO,, at Ra = 1 and 2 x 10'. It is clear from the figure that, as Ra is increased, 
the contours of the dominant source terms are rotated (albeit slightly) about the centre 
of the cavity leading to the distortion of the O1 and 8, fields. This argument can be 
extended to higher Rayleigh numbers but as can be seen from table 7, at high Ra, it 
is difficult to single out any single terms on the right-hand side as the dominant one and 
hence the physics here is more complex. 

4.3. High Rayleigh numbers and boundary-layer formation 
It is well known that natural convection in a cavity shows boundary-layer behaviour 
at the sidewalls as R a i  co. Gill (1966) has considered convection in a cavity with a 
steady gravitational field, which corresponds to our O(eo) problem and developed 
scaling laws for the boundary layer. The streamfunction y?, scales as Rali4, and the 
boundary-layer thickness 8, - Ra-lI4. The boundary-layer equations are obtained by 
utilizing these scalings. The solution at the edge of the boundary layer matches the core 
solution which is a function of the longitudinal variable y only. Since the boundary- 
layer limit, R a i  00 is a singular perturbation problem, we need to be concerned about 
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FIGURE 11. (a) Comparison of forcing term, U, VO, at Ra = 1 and Ra = 2 x 10'. It can be seen that 
the forcing shows the same symmetry about the horizontal midplane at Ra = 1 as the 0, field (figure 
2). Note a slight clockwise distortion of the U,.  VO, field at Ra = 200, which can also be seen in the 
8, field (figure 6a).  (b) Comparison of U,.  VO, at Ra = 1 and Ra = 2 x 10'. At Ra = 1 the U1-V8, field 
shows a symmetry about the vertical midplane like the O2 field. Similar to (a), note distortion of the 
Ul-V8, at Ra = 200 field which accounts for the distortion of the 8, field (figure 8a). 

the limit process c +  0, Ra+ co yielding a result different from that obtained by 
interchanging the limits. 

Figure 10(a) confirms the Rali4 dependence of our numerical solution of the y?ro field. 
It also shows that the y?l and y?, fields have the same scaling. This can be derived from 
the equations as well. Consider the O(6) equations in the limit Ra, Pr+ 00 and w +  0: 

The scale of O(co) fields is known. If the O(E) boundary-layer thickness is assumed to 
be 8,, we still have to determine the scales of $l and O1. The equations represent a linear 
system with homogeneous boundary conditions and a forcing term, Raa, O,, which 
goes to zero at a distance 8, away from the wall. This leads us to conclude that y?,, 8, 
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exhibit a boundary-layer structure of the same scale as 6,. With this it is relatively 
simple to show that $, - Rail4 and 8, - O(1). A similar analysis can be done at O(e2) 
to show that y?, - Rali4 and 8, - O(1). 

We now rescale the variables to put the equations in parameter-free form: 
X = xRa114; Y = y ;  $i(X, Y )  = $JRa1I4 and di(X, Y )  = Bi, where i = 0,1,2 denotes 
the fields at O(ei). When these are inserted into ( 9 ,  (6) and (9)-(12) in the limit Ra, 
Pr+ co, w+O, the equations of momentum and energy yield 

where $U, V) = U ,  Vx - U, V, and 

1 if k = 0 , 1  .‘=(a if k = 2 .  

We have integrated the momentum equation once with respect to X and the integration 
function, @(Y)  gives the temperature distribution in the core of the cavity, i.e. at 
X +  co . The boundary conditions for gi are the usual impermeability and no slip at the 
wall given by Pi (O,  Y) = 0, giX(O, Y) = 0. The third boundary condition is that 
Ji(co, Y )  = I& where & is the streamfunction at the core. The temperature boundary 
conditions are Gi(0, Y )  = 1 for i = 0 and (4i(O, Y )  = 0 for i = 1,2. The second boundary 
condition comes from assuming a known imposed temperature profile at X +  00, 
dt(co, Y )  = @( Y) .  The boundary-layer equations represent a parabolic system that can 
in principle be integrated by marching along Y, with an iterative procedure used to 
determine the core variables, see e.g. Walker & Homsy (1980). 

These equations provide insight into the boundary-layer structure : I , & ~ ~ ~ ~  denotes 
the gradient of vorticity at O(ei). Thus (25) conveys that the gradient of vorticity at any 
point within the boundary layer depends only on the difference between the local and 
core temperatures. Since all vorticity gradients vanish when the temperature equals the 
core temperature, the vorticity boundary layer is also of the same order of magnitude 
as the thermal boundary layer. Hence the flow in the cavity at high Ra at each order 
in e exhibits the same boundary-layer structure as the base flow. It is easy to show that, 
as a consequence of the boundary-layer equations (25) and (26) with associated 
matching conditions, the scalings and equation hierarchies are identical to those 
obtained by the limiting process Ra + 00, F i 0. Our numerical results are in agreement 
with this general picture. Figure 9 shows the O(t) and O(e2) fields at Ra = lo6, in which 
steep gradients exist within the boundary layer close to the lateral walls, while the fields 
in the core of the cavity are a function of y only. 

5. Finite frequency 
So far we have considered the case of large Prandtl numbers and vanishingly small 

forcing frequencies, which allowed us to focus on streaming due to thermal convection 
effects only. We now relax these assumptions to include the effect of inertia by 
considering finite Prandtl numbers and frequencies. 

As discussed in detail above, there are potential resonances with the eigenstates of 
(1 3 )  and (14) which have been identified with the distinct modes of boundary layer and 
internal waves respectively. We are interested in conditions under which one or both 
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FIGURE 12. (a) Log-scale plot of $, us w at Ra = lo4 and various Pr. (b) Log-scale plot of $, us w 
at Pr = 100 and various Ra. 

modes are excited. Hence we have a multi-parameter multi-mode problem where we 
consider the effect of Ra, Pr and forcing frequency w on the two possible modes of 
instability. In the following subsection we examine the O(e) solutions for which 
resonances are possible, and in the next one we consider the resulting streaming fields. 

5.1. O(E) fields 
We consider the solutions of (9) and (10). To begin with, some general features of the 
solution can be understood by examining the maximum values of $, and 8, in the cell 
as the parameters Ra, Pr and w are varied. Let us fix Ra at lo4 and examine the effect 
of w and Pr in figure 12(a), which shows the maximum value of the scaled O(e) 
streamfunction @ J P r  plotted as a function of the forcing frequency w ,  on a log-log 
plot. Several values of Pr are shown giving a family of curves. Many things can be 
noted from the figure. (i) For low frequencies all the curves are relatively flat and 
asymptote to the zero-frequency limit results of $4. (ii) Curves for different Pr collapse 
for high w confirming a $1 - Pr/w scaling which can readily be derived from (9) and 
(10) in the asymptotic limit w +  co. (iii) For Pr > 1 the streamfunction has a mild 
resonance seen in the hump of the curve; for Pr < 1 no resonance can be seen. The flow 
shows a broad resonant interaction and we call the frequency corresponding to the 
peak of the curve the resonant frequency. We note that at fixed Ra the resonant 
frequency shows the scaling w - Prli2 for Pr > 1. The 0, field shows similm behaviour ; 
however, the resonance is very weak. 

At low frequency, in the quasi-static limit, the system gives a forced periodic 
response. As w +  co the system is unable to respond and this is seen in the high- 
frequency roll-off noted. Only at intermediate frequencies is a resonant response 
possible. Recall that the Brunt-Vaisala frequency wBv associated with the internal 
wave is given in our scaling by 

where y is the stratification parameter in the core of the cavity, defined by y = Oou. The 
Brunt-Vaisala frequency represents the highest frequency oscillation that any stratified 
medium can support, hence no internal waves of higher frequency can be excited, 
which explains the asymptotic roll-off that is observed. 

Next we hold Pr constant and investigate the effect of Ra. In figure 12(b) the 
maximum streamfunction versus w curves are shown for Ra = lo4, lo5 and lo7 at 
Pr = 100. The scaling of the y-axis is $ , / R u ~ ' ~ .  We note that the curves show the same 
general features that were pointed out earlier in figure 12(a). However, as Ra is 

osv = (yRa Pr)'I2, (27) 
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Ra Pr w,,, w,,,/(Ra Pr)':' 

104 1 60 0.6 
104 10 200 0.63 
104 100 600 0.6 
105 100 2 000 0.63 
10' 100 20000 0.63 

TABLE 8. The observed resonant frequency for various Ra and Pr and the calculated stratification 
parameter 

increased, the strength of the resonant response also increases, and the band width of 
interaction becomes narrower. 

Other features seen from figure 12(b) include the collapsing of the curves for 
different Ra in the limit w +- 00 which confirms the correctness of the - Ra314 scaling. 
What cannot be seen from figure 12 is that, at low frequencies, the response of the 
system as measured by its maximum value over the domain is in temporal phase with 
the applied forcing. However, as the frequency is increased the phase changes, and in 
the limit w +- 00, the fields are ~ T C  out of phase with the forcing. This can easily be seen 
from the equations, because at high frequencies diffusion of vorticity can be ignored 
and the rate of production of vorticity is balanced by its temporal rate of change. Thus 
if we assume that boundary-layer thickness 8, - Ra-li4 (discussed earlier) we have 

Our results are in excellent agreement with the scaling implied by (27). Table 8 gives 
the values of the frequency at which the amplitude of the O(c) fields is a maximum, over 
a range of Ra and Pr. As can be seen, they obey the approximate relation 

w % 0.62(Ra Pr)li2 

over lo4 < Ra < lo', and 1.0 < Pr < 100. The apparently high value of the effective 
stratification parameter implied by the results (y % 0.8) as opposed to the conventional 
value of 0.5 may be explained as follows. The local stratification at the top and bottom 
of the cavity is likely to be most relevant, since it is here that the internal waves are 
excited by the turning boundary-layer flow, and the stratification there in turn is well 
known to be larger than in the middle of the core where the value 0.5 pertains. Thus 
there is good evidence from the scaling behaviour that an internal gravity wave is being 
excited. 

We can also analyse the detailed field information for $,, 8, over the domain and 
look for gravity waves. Consider figure 13, where we show a time sequence of the O(F) 
field $l(x, 4) = $iR cos (q5) - $;I sin (q5) where q5 = or denotes the phase of the 
sinusoidally oscillating field as q5 varied from 0 to TC, with increments of n/8. The overall 
picture that emerges is that when the O(co) hot (cold) fluid turning at the upper left 
(lower right) corner of the cavity is subjected to sinusoidal excitation, it excites 

N iRa3I4Pr/w. 

~ 

FIGURE 13. Time sequence of $' at Ra = 10' and Pr = 100 from q5 = 0 to 7c at intervals of nj8. 
The maximum value of the streamfunction, and the value at the centre of the cavity, $,,, are 
(a) at 4 = 0: $,,, = -22.86, $mzd = -18.901: (b) at # = n/8: $.,,, = qrrnzd = -28.106; (c) at 
# = x/4: = $mtd = -33.032; (d )  at q5 = 3x18: $.,,, = $'mzd = -32.929; (e) at $ = 7~12: 
$,,, = $mzd = -27.812; cf) at $ = 57c/8: $,,, = $,,, = - 18.462; (g) at q5 = 37c/4: = 16.253, 
+,,, = -6.301; (h) at 4 = 77c/8: $,,, = 20.978, $,,, = 8.421. 
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FIGURE 13. For caption see facing page. 

371 



372 A .  Farooq and 

0 
1 .o 

0.8 

0.6 

0.4 

Y 

0.2 

0 0.5 1.0 

1.0 

0.8 

0.6 

0.4 

Y 

0.2 

G .  M .  Homsy 

0 0.5 1.0 

0 0.5 1.0 0 
X 

0.5 1 .o 
X 

FIGURE 14. Time sequence of 
at 4 = 0: $.,,, = -22.86, 
qi = 71/16: $,,, = +mid = -23.964; (d )  at qi = 3x132: $,,, = 7,brntd = -26.161. 

at Ra = lo7 and Pr = 100 from qi = 0 to x/S at intervals of 71/32: (a) 
= - 18.901; (b) at 4 = 71/32: $,,, = -22.86 = $mid = -21.536; (c) at 

travelling waves that travel to the opposite right (left) wall. In the centre of the cavity 
the two waves engage in constructive/destructive interference leading to the formation 
of a stationary wave. At 4 = 0, as the figure shows, we see two wave packets, at the 
upper right and lower left corners. Since the evolution at this stage is rapid we have 
shown in figure 14 a time sequence at phase intervals of An between #J = 0 and in. As 
the wave packets move towards the centre of the cavity, interference takes place leading 
to the formation of a stationary wave (seen in the closed elliptic curves) at #J = &n. 
Then as the cycle proceeds, this standing wave grows and engulfs the entire cavity, seen 
at #J = tn. Then, by mechanisms that are not entirely clear, eddies form in the lower left 
(and upper right) corners of the cavity that gain in strength as the cycle proceeds. The 
growth of these eddies is at the expense of the standing wave which begins to shrink 
and is finally completely extinguished by the eddies. A very weak wave flanked by 
strong circulations on either side is seen at #J = ;z. How is the wave re-formed? This 
evolution is also rapid and hence we consider a time sequence at intervals of &Z from 
#J = in to n. These are shown in figure 15, and as can be seen at $ = gn, only a small 
vestige of the wave remains, but new disturbances are excited that grow rapidly and 
soon the eddies on the sidewall recede, leading to the scenario that was presented at 
#J = 0. This is again repeated in the other half of the cycle, from #J = z to 2n. 

In figure 16 we show the temperature field O1 for #J E ( 0 , ~ )  at intervals of in. It may 
be recalled that the temperature field does not show a significant resonant response. 
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FIGURE 15. Time sequence of 9, at Ra = lo7 and Pr = 100 from $ = 7 ~ / 8  to x at intervals of ~ / 3 2 :  
(a) at $ = 29x/32: $max = 21.745, $,(, = 10.014; (b) at $ = 30x132: $max = 22.324 = $mid = 13.112; 
(c) at $ = 31~ /32 :  $,,, = 22.701, $mid = 16.0845; ( d )  at $ = X :  kmaZ = 22.86, $mid = 18.901. 

The figure shows that the temperature field is dominated by the boundary layers, and 
the response to the forcing is quite weak. However, a wave-like mode does form and 
from the sequence shown is strongest at q5 = In. There are some interesting features 
that we wish to point out. The temperature field is approximately out of phase with 
the velocity (streamfunction) field, because when the velocity ‘wave’ is at its peak, at 
q5 = $, temperature ‘wave’ is at its minimum, and the temperature field only shows 
boundary layers. And when the temperature wave is strongest, q5 = gn the velocity 
‘wave’ is at its weakest. This is not a coincidence, but a result of the property of small- 
amplitude waves that they transport only momentum, not mass. This property can 
serve as a useful diagnostic tool which in our case confirms that the features seen in 
figures 13-16 are indeed waves and not just the response to forced oscillations. 

We thus conclude that for the range of parameters (Ra,  Pr, w )  considered there is an 
interaction with the internal gravity wave. There is no evidence of any interaction with 
the boundary-layer instability but this is probably because the Ra considered is too 
low: from (15), at Pr = 100, the critical Rayleigh number for neutral boundary-layer 
waves Ra,,, is 4.176 x lo’, which is much higher than the highest Rayleigh number 
(lo’) that we have considered. It may be argued that Ra,, can be lowered by choosing 
sufficiently small Pr. We note however that (15) was derived for the stability of a model 
boundary-layer problem, that of convection in a slot. In the present case of flow in a 
cavity, the separation of flow into two regimes and the formation of boundary layers 
is highly dependent on the Prandtl number. If the Prandtl number is small the 
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FIGURE 17. (a) Log-scale plot of +z us. w at Pr = 1 and various Ra. (b) Plot of Nu, us w for various 
Ra at Pr = 1 showing the change in sign of Nu,. Note that the value of w at which the sign changes 
corresponds to the frequency of the internal gravity wave. 

temperature field is essentially conductive, indicating that modes associated with 
vertical stratification will not be present. 

5.2. Streaming flow 

We now consider whether the resonant responses of the O(c) fields can lead to large 
changes in the streaming response. The streaming flow is governed by the following 
forcing terms. In the vorticity transport equation we have forcing due to convection of 
vorticity, (1 / 2 P r )  [J($f, V":) + J($:, V'$lC.:)], and forcing due to production of 
vorticity due to buoyancy, ;Raa,O,. In the energy equation the forcing is due to 
convective transport of energy, +[.I($?, 0;) +J($:, Of)]. As we noted previously, the O1 
response has no structure, hence the buoyancy forcing can show no resonance. The 
Reynolds-stress terms (from the convection of vorticity) do show resonance since they 
are associated with the internal wave, but the strength of the forcing is itself dependent 
on Prandtl number, approximately - l/Pr. Thus we expect that for Pr 9 1 there 
would be no effect because the forcing goes to zero. For Pr $ 1, we do not expect any 
resonance because there is no stratification to begin with and hence no internal waves 
can be formed. Thus it seems that Pr  = 1 would show maximum effect. This is indeed 
borne out by our calculations for $, which show a resonant response near Pr = 1. 
Figure 17 (a), which plots the order of magnitude of the streaming flow stream-function 
versus the forcing frequency for Ra = lo4, lo5, lo6 at Pr = 1, shows this resonant 
response. It should however be noted that the resonances get stronger as Ra is 
increased implying that these effects could become significant at Ra 9 lo6. At high 
frequencies the streaming flow also decays rapidly, as 1/w2. 

Another interesting effect concerns the Nusselt number, Nu,. Figure 17(b) shows a 
plot of Nu, us. o for various Ra at Pr = 1.0. It can be seen that Nu, falls sharply near 
oBV and changes sign. This is very easily explained when one considers the forcing term 
in the energy equation, Re O,)]. We have noted before that the phase difference 
between temperature and streamfunction becomes fx at resonance, and hence the time 
average of the forcing term above goes to zero, leading to the drop in Nu,. 

FIGURE 16. Time sequence of 8, at Ra = lo7 and Pr = 100 from q5 = 0 to n at intervals of 4 8 .  The 
maximum value of the isotherms is: (a) at q5 = 0: 8, = 13.0 x 
(c )  at q5 = n/4: 8, = 25.9 x ( d )  at q5 = 3n/8: 8, = 26.8 x 
cf) at q5 = 5n/8: 8, = 21.6 x (g) at q5 = 3 4 4 :  8, = 14.5 x 

(b) at q5 = x / 8 :  8, = 21.1 x 
(e) at q5 = n/2: 8, = 26.0 x 
(h) at q5 = 7n/8: 8, = 6.8 x 
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6. Extension to general forcing 
So far we have assumed that the time-dependent forcing is a simple harmonic 

function. It is fairly straightforward to investigate the effect of a more generalized 
forcing function f ( 7 )  which, while being O(s), spatially uniform and aligned with the 
steady gravitational field, has a more general dependence on time. Such a forcing has 
sufficient generality to raise the prospect of simultaneously exciting several modes of 
instability. 

Since the governing equations are linear, it is possible to solve the O(c) flow for each 
of the Fourier components of the forcing and then the flow can be reconstructed by 
summing together the Fourier components. For the streaming flow one now needs to 
consider the contribution of the nonlinear self-interaction of each of the above- 
mentioned O(s) Fourier modes that contribute to time-averaged Reynolds-stress type 
of terms. We now show that these forcing terms for the streaming flow are a weighted 
function of the autocorrelation of the applied forcing. 

Hence, considering a general forcing function f (7 ) ,  we have at O(c) 

(28) 

(29) 
with boundary conditions as before, but here $l = $.,(x,y, t )  and 8, = Ol(x,y, t). 
Taking the Fourier transform of (28) and (29) defined as F:7+s ,  we denote the 
transformed variables as $,(x, y ,  s), il(x, y ,  s j  and f(s). If the variables are rescaled as 
&,(x, y ,  s) = $l(x, y ,  s) /As)  and il(x, y ,  s) = B1(x, y ,  s)/'s) we get for each mode s, 

(30) 

(3 1) 
which are of course identical to (9) and (10) for the discrete-frequency case. The above 
equations give the solution for any mode s. The full solution at O(s) (for say $,) can 
be reconstructed by considering the inverse transform F6-'[&1] = F-l[&lfis)] which 
can also be expressed as the convolution product: $, = $,(7) *f(7),  $,(7) being the 
inverse transform of &l. Similar relations hold for 8,. 

At O(e2), we have the time-dependent equations 

1 
Pr -- a,(v"l> + .=q$l,'l> = Ra a, @,f(7>, 

a, 8, + %($l, 0,) = 0, 

is 
Pr -- (V"1) + 4) = Ra a, 4 0 ,  

isi, + d ~ 7 , ( & ~ ,  el> = 0, 

(32) 

(33) 
where again the boundary conditions are the same as before, and $, = $2(x,y, t )  and 
8, = B,(x, y ,  t) .  Taking the Fourier transform of the above, it is seen that the right-hand 
side involves convolution products of $,(.x, y ,  s), Bl(x, y ,  s) and's). Since it is only the 
steady-streaming terms that are of interest to us we consider s = 0. Thus by making 
appropriate substitutions, it is easy to show (by recognizing thatfl~),  $l and 8, are real 
valued), that the above equations can be written as 

1 1 
- - ' T ( v z $ J  Pr + %($2,82)  = Raaz ' l f ( 7 )  +KJ($l, V2$l), 

'2 + %($2, '2) = J($l> 
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where E(Q = f([).f( - Q = f(Qp([) is the spectral energy density. We have also used 
tbe fact" that because these are real-valued functions, $T(Q = ~ 1 (  - 5) and 
OT(Q = el( - Q. In order to cast the equations in a form more akin to (1 1) and (12) we 
split each of the integrals as 

s_: = lm + s.'. 

5 $ ( & 2 2 s 2 )  = 2 J= 0 al(% + <J<@<Q, v";<m + J($:(Q>, v2$W) d5, (36) 

If the transformed variables are split into real and imaginary parts, = 
@([) + i$:(Q, il([) = @(Q + i&(Q, further manipulation results in 

=%7,($2,42) = 2 Se m3 C J < @ < Q >  @(OD) + J ( & : < Q n ,  &))) dt.  (37) 

It is interesting to note that in order to find the time-dependent O(s) fields we need to 
know the full time-dependent forcingfl~), but to compute the streaming flow only the 
spectral energy distribution is sufficient. Since one is not usually interested in the full 
time-dependent response but some mean characteristics of the flow, it is interesting to 
know that one need not know the full time-dependent forcing either: its spectral energy 
distribution is sufficient for statistical type of information about the flow. 

Finally we point out that having solved (9) and (10) for a range of frequencies, we 
can easily compute the streaming for more complicated forcings. In particular the 
solution to (36) and (37) can be constructed by simply taking the weighted integral of 
~2 with respect to the spectral energy density function. 
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